فرهنگ و تاريخ | سرگرمي | نيازمنديها | مذهبي | اقتصادي | خانواده و اجتماع | هنر | اخبار | ورزش | کامپيوتر | گردشگري | صنعت و دانشگاه | صفحه اصلي

صفحه اول بخش هوا فضا
دانشگاه ها و اساتيد هوا فضا
آموزش علوم رشته هوا فضا
آموزش نرم افزارهاي هوا فضا
مراکز تحقيقاتي رشته هوا فضا
پروژه هاي تحقيقاتي هوا فضا
رده بندي سايتهاي هوا فضا
آشنايي با متخصصين هوا فضا
بانک مقالات رشته هوا فضا
پايان نامه هاي دانشجويي
مجلات و نشريات هوا فضا
گالري عکس نجوم و فضا
 
 

عنوان: خورشيد

نويسنده: لنا سجاديفر

منبع اطلاعاتي: www.iranika.ir

عکس
 

 

گالري تصاوير

 

- - - - -

   
 
 

خورشيد، گوي غول پيکر درخشاني در وسط منظومه شمسي و تامين کننده نور، گرما و انرژي هاي ديگر زمين است. اين ستاره به طور کامل از گاز تشکيل شده است. بخش بشتر اين گاز از نوعي مي باشد که به نيروي مغناطيسي حساس است. اين نوع از گاز به خاطر همين حساسيت، بسيار خاص مي باشد. دانشمندان به آن پلاسما* مي گويند. نه سياره و قمرهايشان، ده ها هزار خرده سياره و چندين تريليون شهاب سنگ به دور خورشيد در گردشند. خورشيد و همه اين اجرام در منظومه شمسي مي باشند. زمين با ميانگين فاصله تقريبي 149.600.000 کيلومتر از خورشيد در حرکت است.

 

 

 خورشيد يکي از 100 بيليون ستاره در کهکشان راه شيري است. فاصله خورشيد از مرکز کهکشان 25.000 سال نوري است و هر 250ميليون سال يکبار به دور آن گردش مي کند.
شعاع خورشيد (فاصله بين مرکز تا سطح آن) حدود 695.500 کيلومتر، تقريبا 109 برابر شعاع زمين است. مثال زير به شما کمک مي کند تا مقياس خورشيد، زمين و فاصله بين آنها را تصور کنيد: اگر شعاع زمين را به اندازه عرض يک گيره کاغذ معمولي تصور کنيم، شعاع خورشيد تقريبا برابر با پايه يک ميز تحرير و فاصله آنها حدودا به اندازه 100 قدم خواهد بود.

قسمتي از خورشيد که ما مي بينيم دمايي حدود 5500 درجه سانتيگراد دارد. ستاره شناسان دماي ستارگان را با واحدي به نام کلوين (Kelvin) اندازه گيري مي کنند و به طور خلاصه آن را K مي نويسند. يک کلوين دقيقا برابر با 1 درجه سلسيوس يا 1.8 درجه فارنهايت است، اما تفاوت واحد کلوين با واحد سلسيوس در نقطه شروع آنهاست. مقياس واحد کلوين از صفر مطلق که برابر است با 273.15 درجه سانتيگراد آغاز مي شود. بنابراين دماي سطح خورشيد 5800K و دماي هسته خورشيد بيش از 15ميليون K مي باشد.
انرژي خورشيد به واسطه واکنش هاي ترکيبي اتمي در اعماق هسته آن تامين مي شود. در يک واکنش ترکيبي دو هسته اتم با يکديگر همراه شده و هسته اي جديد را به وجود مي آورند.

 پلاسما حالت چهارم ماده است. در خيلي جاها اين چنين آموزش مي دهند که ماده داراي سه حالت جامد، مايع و گاز است. پلاسما گاز شبه خنثايي از ذرات باردار و خنثي است که رفتار جمعي از خود ارائه مي‌دهد. به عبارت ديگر مي‌توان گفت که واژه پلاسما به گاز يونيزه شده‌اي اطلاق مي‌شود که همه يا بخش قابل توجهي از اتمهاي آن يک يا چند الکترون از دست داده و به يونهاي مثبت تبديل شده باشند. يا به گاز به شدت يونيزه شده‌اي که تعداد الکترونهاي آزاد آن تقريبا برابر با تعداد يونهاي مثبت آن باشد، پلاسما گفته مي‌شود. توضيحات بيشتر را در ادامه مقاله مطالعه خواهيد نمود.
اين ترکيب با تبديل اجزاي هسته به انرژي، توليد انرژي مي کند. خورشيد مانند زمين مغناطيسي است. دانشمندان با در نظر گرفتن ميدان مغناطيسي يک جرم، خاصيت مغناطيسي آن جرم را تشريح مي کنند. ميدان مغناطيسي محدوده اي است که از همه فضاي اشغال شده توسط يک جرم و بيشتر فضاي پيرامون آن شامل مي شود.
دانشمندان محدوده اي که در آن نيروهاي مغناطيسي شناسايي مي شوند(مثلا به وسيله قطب نما) را ميدان مغناطيسي مي نامند. فيزيکدانان خاصيت مغناطيسي يک جرم را بر اساس قدرت ميدان مغناطيسي آن توصيف مي کنند. اين قدرت برابر است با نيرويي که يک ميدان مغناطيسي بر يک جسم مغناطيسي مانند سوزن قطب نما اعمال مي کند. قدرت ميدان مغناطيسي عمومي خورشيد تنها دو برابر قدرت ميدان مغناطيسي زمين مي باشد. ولي ميدان مغناطيسي خورشيد در مناطق کوچکي به شدت متمرکز است، با قدرتي معادل 3000 بار بيشتر از اندازه ميدان مغناطيسي عمومي آن. اين مناطق شکل دهنده ساختمان خورشيد و به وجود آورنده ترکيبات سطح و اتمسفر آن يعني منطقه اي که ما مي بينيم مي باشند. مناطق نسبتا سرد و لکه هاي خورشيدي، فوران هاي بسيار ديدني که به آنها زبانه هاي خورشيدي مي گويند و شعله هاي تاج خورشيد، شکل کلي سطح خورشيد را ايجاد مي نمايند.
زبانه هاي خورشيدي شديدترين انفجار و فوران در منظومه شمسي مي باشند. سپس شعله هاي تاج خورشيد که داراي شدتي کمتر از زبانه ها و محتوي مقدار بسيار زيادي ماده مي باشند. تنها يک فوران در تاج خورشيد مي تواند حدود 20 بيليون تن ماده را در فضا پخش کند. يک مکعب از جنس سرب که هر ضلع آن برابر با 1.2 کيلومتر است مي تواند چنين جرمي داشته باشد.
خورشيد 4.6 بيليون سال پيش متولد شد و سوخت لازم براي اينکه تا 5 بيليون سال ديگر به همين صورت باقي بماند را دارد. پس از آن اندازه خورشيد آنقدر بزرگ مي شود تا اينکه به نوعي از ستاره به نام غول سرخ تبديل مي شود. در آن هنگام لايه هاي بيروني خود را با فراافکني از دست مي دهد. با فرو ريختن آنچه از خورشيد باقي مي ماند، به جرمي با نام کوتوله سفيد تبديل مي شود و آرام آرام روشنايي خود را از دست مي دهد و سرانجام وارد دوره جديد زندگي خود، به شکل يک جرم کم نور و سرد که گاهي به آن کوتوله سياه مي گويند، مي شود.

 جرم و چگالي خورشيد:

جرم خورشيد 99.8 درصد از جرم کل منظومه شمسي است. اين جرم معادل عدد 1027 X2 تن مي باشد که با يک 2 و بيست وهفت صفر مقابل آن نوشته مي شود. جرم خورشيد 333.000 برابر جرم زمين است. ميانگين چگالي آن حدود 90 پوند در هر فوت مکعب و يا 1.4 گرم در هر سانتيمتر مکعب مي باشد. اين مقدار تقريبا معادل 1.4 برابر چگالي آب و کمتر از يک سوم ميانگين چگالي زمين است.

 

 
مقايسه اندازه خورشيد با زمين و ديگر سيارات (عکس از سايت ايرانيکا)

 

 ترکيب بندي خورشيد:

بيشتر اتمهاي خورشيد، مانند اغلب ستارگان، اتمهاي عنصر شيميايي هيدروژن مي باشند. بعد از هيدروژن، عنصر هليوم در خورشيد بسيار يافت مي شود و بقيه جرم خورشيد از اتمهاي هفت عنصر ديگر تشکيل شده است. به ازاي هر 1 ميليون اتم هيدروژن در کل خورشيد، 98.000 اتم هليوم، 850 اتم اکسيژن، 360 اتم کربن، 120 اتم نئون، 110 اتم نيتروژن، 40 اتم منيزيوم، 35 اتم آهن و 35 اتم سيليکون وجود دارد. بنابراين حدودا 94 درصد از اتمها، هيدروژن و حدود 0.1 درصد اتمهايي غير از هيدروژن و هليوم مي باشند.
اما هيدروژن سبک ترين عنصر است و 72 درصد از جرم اين ستاره را تشکيل مي دهد. هليوم 26 درصد از جرم خورشيد را به خود اختصاص داده است.
درون خورشيد و بيشتر اتمسفر آن از پلاسما تشکيل شده است. پلاسما گازي است که دماي آن به قدري زياد است که به نيروي مغناطيسي حساس مي باشد. دانشمندان گاهي به تفاوتهاي بين گاز و پلاسما بسيار تاکيد کرده و پلاسما را حالت چهارم ماده، در کنار سه حالت جامد، مايع و گاز، مي نامند. ولي در حالت کلي، دانشمندان تنها در صورت لزوم بين گاز و پلاسما تفاوت قائلند.
تفاوت اساسي بين گاز و پلاسما متاثر از حرارت بسيار شديد است: اين حرارت باعث جدا شدن اتهاي گاز مي شود. آنچه باقي مي ماند يعني پلاسما از اتمهاي باردار به نام يون و ذرات باردار به نام الکترون که به طور مستقل حرکت مي کنند، تشکيل شده است.
يک اتم خنثي شامل يک يا چند الکترون است که مانند يک پوسته در اطراف هسته مرکز اتم عمل مي کنند. هر الکترون حامل يک بار منفي الکتريکي است. هسته در قلب مرکزي يک اتم جاي گرفته است که تقريبا همه جرم اتم را دارد. ساده ترين شکل هسته، که همان هسته هيدروژن است، از يک ذره به نام پروتون تشکيل شده است. يک پروتون حامل يک بار مثبت الکتريکي است. بقيه شکل هاي هسته شامل يک يا چند پروتون و يک يا چند نوترون مي باشند. نوترون بار الکتريکي ندارد بنابراين بار الکتريکي همه هسته ها مثبت است. يک اتم خنثي به تعداد پروتونهايش، الکترون دارد بنابراين مجموع بارهاي آن برابر با صفر است.
يک اتم يا مولکول که يک يا چند الکترون خود را از دست بدهد بار مثبت پيدا مي کند و به آن يون يا يون مثبت مي گويند. بيشتر اتمهاي خورشيد، يونهاي مثبت هيدروژنند. بنابراين، بيشتر خورشيد شامل پروتون و الکترون هاي مستقل است.

مقدار نسبي پلاسما و ديگر گازها در يک منطقه مشخص شده از اتمسفر خورشيد به دماي آن منطقه بستگي دارد. با افزايش دما، اتمهاي بيشتر و بيشتري يونيزه مي شوند و اتم هاي يونيزه شده الکترون هاي بيشتر و بيشتري از دست مي دهند. تاج خورشيد نام منطقه اي از اتمسفر خورشيد است که بيش از هر جاي ديگر در اتمسفر خورشيد، يونيزه شده است. دماي تاج خورشيد معمولا بين 3 ميليون K تا 5 ميليون K يعني دمايي فراتر از دماي لازم براي جدا کردن بيش از نيمي از 26 الکترون اتم آهن مي باشد.
اينکه چه اندازه از اتم هاي يک گاز اتمهاي يونيزه هستند بستگي به دما دارد. اگر دما نسبتا داغ باشد، اتمها يونيزه مي شوند اما چنانچه گاز نسبتا سرد باشد امکان ترکيب شيميايي اتمها و تشکيل مولکول به وجود مي ايد. بيشتر اتمهاي سطح خورشيد يونيزه شده اند. ولي در مناطق لکه هاي خورشيدي به دليل پائين بودن دما، اتمها تشکيل مولکول مي دهند.

 

 
خورشيد بسيار بزرگتر از زمين است. از مرکز خورشيد تا سطح آن 109 برابر شعاع زمين مي باشد. بعضي از طوفان هاي گازي که از سطح خورشيد بلند مي شوند از زمين بزرگترند. (تصوير از world book)
 

 بازده  انرژي خورشيد:

بيشتر انرژي که خورشيد ساطع مي کند نور مرئي و اشعه هاي فروسرخ که ما آن را به صورت گرما دريافت مي کنيم، مي باشد. نور مرئي و پرتوهاي فروسرخ، دو شکل از پرتوهاي الکترومغناطيسي مي باشند. خورشيد همچنين پرتوهايي از ذرات که بيشتر پروتون ها و الکترون ها مي باشند را ساطع مي نمايد.

 پرتوهاي الکترومغناطيسي:
پرتوهاي الکترومغناطيسي شامل نيروي الکتريکي و نيروي مغناطيسي مي باشند. اين پرتوها را مي توان مانند يک موج انرژي و يا بسته هاي ذره مانندي از انرژي به نام فوتون دانست.
نور مرئي، اشعه فروسرخ و ديگر اشکال پرتوهاي الکترومغناطيسي از حيث مقدار انرژي با هم متفاوتند. شش گروه از انرژي ها، طيف انرژي هاي الکترومغناطيس را تشکيل مي دهند. از کم انرژي ترين تا پر انرژي ترين به ترتيب عبارتند از: امواج راديويي، اشعه فروسرخ، نور مرئي، اشعه فرا بنفش، اشعه ايکس و اشعه گاما. مايکروويو ها، که موج هاي بسيار قوي راديوئي هستند، گاهي در يک رده ديگر به طور مجزا قرار مي گيرند. پرتوهاي خورشيد شامل همه پرتوهاي طيف الکترومغناطيس مي باشند.
مقدار انرژي در امواج الکترومغناطيس ارتباط مستقيم با طول موج* يعني فاصله بين قله هاي پياپي آنها دارد. هرچه انرژي پرتو بيشتر باشد، طول موج کوتاهتر است. براي مثال پرتوهاي گاما طول موجي کوتاهتر از امواج راديوئي دارند. انرژي يک ذره فوتون بستگي به مکان آن در طيف دارد. براي مثال يک فوتون اشعه گاما انرژي بيشتري از يک فوتون راديوئي دارد.
همه اشکال امواج الکترومغناطيس با سرعت برابر، معادل سرعت نور (299.792 کيلومتر در ثانيه) در فضا سفر مي کنند. با اين سرعت، يک فوتون آزاد شده از خورشيد تنها حدود 8 دقيقه طول مي کشد تا به زمين برسد.
امواج الکترومغناطيسي که از خورشيد به بالاي اتمسفر زمين مي رسند ثابت خورشيدي نام دارند. اين مقدار برابر است با حدود 1370 وات در هر متر مربع. ولي تنها حدود 40 درصد از اين امواج به سطح زمين مي رسند. اتمسفر زمين مقداري از نور مرئي و اشعه فروسرخ، تقريبا همه پرتوهاي فرابنفش و تمامي پرتوهاي ايکس و گاما را فيلتر مي کند. تقريبا همه امواج راديويي به سطح زمين مي رسند.

 پرتوهاي ذرات:
پروتون ها و الکترون ها دائما مانند بادهاي خورشيدي از سطح خورشيد بلند مي شوند. اين ذرات به زمين بسيار نزديک مي شوند ولي ميدان مغناطيسي زمين مانع از ورود آنها به سطح زمين مي شود.
به هر حال به دليل انفجارها و گدازه هاي تاج و زبانه هاي خورشيدي، ذرات زيادي با شدت به اتمسفر زمين مي رسند. اين ذرات را به نام پرتوهاي کيهاني خورشيدي مي شناسند. بيشتر اين ذرات پروتون ها هستند ولي الکترون ها نيز در آنها وجود دارند. آنها به شدت پر انرژيند. بنابراين مي توانند براي فضانوردها و کاوشگرها خطرآفرين باشند.
براي درک بهتر از معني طول موج تصور کنيد،حشره اي در آب يک حوض آرام دست و پا مي زند و امواجي دايره اي به سمت حاشيه هاي اطراف حوض منتشر مي شوند. به بلندترين قسمت هر موج دايره شکل "قله" مي گويند. فاصله ميان هر دو قله "طول موج" ناميده مي شود. شمار قله هايي که در هر ثانيه به حاشيه حوض مي رسند "فرکانس" نام دارد. هر چه فرکانس بيشتر باشد، طول موج کوتاه تر است
پرتوهاي کيهاني نمي توانند به سطح زمين برسند. هنگاميکه آنها با اتمسفر زمين برخورد مي کنند، تبديل به باراني از ذرات کم انرژي تر مي شوند. ولي از آنجائيکه رويدادهاي خورشيدي بسيار پر انرژي هستند، آنها مي توانند طوفانهاي ژئومگنتيک را، بويژه در ميدان مغناطيسي زمين به وجود آورند. اين طوفانها مي توانند باعث مختل شدن تجهيزات الکتريکي در سطح زمين شوند. براي مثال آنها مي توانند با افزايش فشار بار کابلها منجر به قطع برق شوند.

 رنگ:
در طيف پرتوهاي الکترومغناطيس، نور مرئي متشکل از رنگهاي موجود در رنگين کمان مي باشد. نور خورشيد شامل همه اين رنگها است. بيشتر پرتوهايي که از خورشيد به ما مي رسند رنگهاي زرد تا سبز از طيف نور مرئي مي باشند. در هر صورت نور خورشيد سفيد است. هنگاميکه اتمسفر زمين مانند يک فيلتر براي تنظيم خورشيد عمل مي کند، خورشيد ممکن است زرد يا نارنجي به نظر رسد.
شما مي توانيد نور خورشيد را به کمک يک منشور نگاه کرده و آن را تفکيک کنيد. نور قرمز، که توسط کم انرژي ترين فوتون ها، با بلندترين طول موج، به وجود مي ايد در يکي از دو انتهاي طيف قرار مي گيرد. نور قرمز در نور نارنجي و سپس زرد محو مي شود. پس از زرد، نور سبز و بعد از آن آبي را خواهيد ديد. آخرين رنگ نيز بنفش مي باشد که با پر انرژي ترين فوتون ها و کوتاه ترين طول موج، به وجود مي ايد. اين فهرست رنگ به اين معنا نيست که نور خورشيد تنها از شش يا هفت رنگ تشکيل شده بلکه هر يک از رنگ هاي مابين رنگهاي مذکور، خود يک رنگ به حساب مي ايد. تعداد رنگهاي موجود در طبيعت از تعداد رنگهاييکه انسان تابه حال نامگذاري کرده بسيار بيشتر است.
 

 چرخش خورشيد:
خورشيد تقريبا در هر ماه يک دور کامل به دور خود مي چرخد. ولي از آنجائيکه خورشيد يک جرم گازيست نه يک جرم جامد، قسمتهاي مختلف آن با سرعت متفاوت حرکت مي کند. گازهاي نزديک به خط استواي خورشيد در هر 25 روز يک دور کامل حرکت مي کنند، در حاليکه گردش کامل گازهاي موجود در عرضهاي جغرافي بالاتر 28 روز به طول مي انجامد. محور گردش خورشيد با چند درجه شيب نسبت به محور گردش زمين قرار گرفته است بنابراين قطب جغرافي شمال يا قطب جغرافي جنوب آن معمولا از زمين قابل رويت است.

 ارتعاش:
ارتعاشات خورشيد مانند زنگيست که دائم در حال نواخته شدن است. خورشيد در آن واحد بيشتر از 10 ميليون درجه صوت مختلف ايجاد مي کند. ارتعاشات گازهاي خورشيدي از نظر مکانيکي شبيه به ارتعاشات هوا، که آنها را با نام امواج صوتي* مي شناسيم، مي باشند. از اين رو ستاره شناسان امواج خورشيدي را به رغم اينکه نمي شنويم، مانند امواج صوتي مي دانند. سريعترين ارتعاش خورشيدي حدود 2 دقيقه به طول مي انجامد. مدت زمان يک ارتعاش مقدار زمان لازم براي کامل شدن يک حلقه يا سيکل از ارتعاش است. آرام ترين ارتعاشي که گوش انسان قادر به تشخيص آن مي باشد مدت زماني معادل 20/1 ثانيه دارد.
بيشتر امواج صوتي خورشيد از "سلولهاي حرارتي" موجود در توده هاي متراکم گاز در اعماق خورشيد سرچشمه مي گيرند. اين سلولها انرژي را تا سطح خورشيد بالا مي آورند. بالا آمدن اين سلولها مانند بالا آمدن بخار از آب در حال جوشيدن است. واژه سلولهاي حرارتي به همين دليل به آنها اطلاق مي گردد. هنگاميکه سلولها بالا مي ايند، سرد مي شوند. آنگاه به درون خورشيد جائيکه بالا آمدن از آنجا آغاز مي شود باز مي گردند. در هنگام سقوط و پائين رفتن سلولهاي حرارتي ارتعاش شديدي به وجود مي ايد. اين ارتعاش باعث مي شود که امواج صوتي از درون سلولها خارج شوند.
از آنجائيکه اتمسفر خورشيد غلظت کمي دارد، امواج صوتي نمي توانند در آن به حرکت و جريان درايند. در نتيجه، وقتي که يک موج به سطح مي رسد مجددا به درون خورشيد بر ميگردد. بنابراين قسمت کوچکي از سطح خورشيد حرکت تند و سريعي به بالا و پائين پيدا مي کند. وقتي يک موج به درون خورشيد سفر مي کند، به سمت بالا و سطح آن خم مي شود. مقدار انحناي موج بستگي به چگالي گازي که موج درون آن حرکت ميکند و مواردي ديگر دارد. در نهايت، موج به سطح مي رسد و دوباره به درون بر مي گردد. اين رفت و آمدها تا آنجا که موج انرژي خود را در گازهاي پيرامون از دست بدهد، ادامه خواهد داشت.
امواجي که به عميق ترين فاصله از سطح خورشيد فرو مي روند طولاني ترين مدت را دارند. برخي از اين امواج تا هسته خورشيد فرو مي روند و مدتي معادل چندين ساعت دارند.
هوا داراي خاصيت ارتجاعي مي‌باشد هنگامي که يک لايه از مولکولهاي هوا به جلو رانده مي‌شود، اين لايه به نوبه خود لايه ديگري را به جلو مي‌راند و خود به حال اول بر مي‌گردد. لايه جديدي نيز لايه ديگري را به جلو مي‌راند و به همين ترتيب اين عمل بارها و بارها تکرار مي‌گردد تا انرژي به پايان برسد. اين جابجايي مولکولها اگر بيش از 16 مرتبه در ثانيه تکرار ‌گردد صدا بوجود مي‌ايد. هر رفت و برگشت لايه هوا يک سيکل نام دارد و تعداد سيکل در ثانيه تواتر يا بسامد يا فرکانس ناميده مي‌شود.
 

 ميدان مغناطيسي:
گاهي اوقات، ميدان مغناطيسي خورشيد به شکلي ساده و گاهي به شدت پيچيده است. زماني ميدان مغناطيسي شکلي ساده دارد که محور عمودي خورشيد مانند يک آهن رباي غول پيکر عمل کند. شما با انجام آزمايش براده آهن بر روي کاغذ و يک آهن ربا مي توانيد شکل ميدان مغناطيسي آهن ربا را مشاهده کنيد. بيشتر براده ها در حلقه هاي D شکلي که دو سر آهن ربا را به هم وصل مي کنند تجمع مي نمايند. فيزيکدانان ميدان مغناطيسي را به صورت خطوطي فرضي که حلقه هاي براده آهن بر روي آنها قرار مي گيرند ، فرض مي نمايند. به اين خطوط ، خطوط ميدان مغناطيسي يا خطوط نيرو مي گويند. دانشمندان به اين خطوط، مسير اختصاص داده اند. به يک سر آهن ربا قطب شمال مغناطيسي و به سر ديگر قطب جنوب مغناطيسي اطلاق مي گردد. خطوط مغناطيسي از قطب شمال آهن ربا بيرون مي ايند و با ايجاد يک خميدگي از ناحيه قطب جنوب مغناطيسي وارد آهن ربا مي شوند.
دليل ايجاد ميدان مغناطيسي خورشيد انتقال حرارتي در خورشيد است. هر ذره باردار الکتريکي مي تواند با حرکت و جابجايي يک ميدان مغناطيسي به وجود آورد. سلولهاي حرارتي که از يونهاي مثبت و الکترون ها تشکيل شده اند، به شکلي منتشر مي گردند که باعث ايجاد ميدان مغناطيسي خورشيد مي شود.
وقتي ميدان مغناطيسي خورشيد پيچيده مي شود، خطوط مغناطيسي دچار پيچ و تاب مي شوند. ميدان مغناطيسي به دو دليل اين چرخش ها و پيچيدگي ها را به وجو مي آورد: اول اينکه خورشيد در منطقه استوايي بسيار سريع تر از قسمتهاي ديگر حرکت مي کند و دوم اينکه لايه هاي دروني خورشيد بسيار سريع تر از سطح آن در گردشند. تفاوت در سرعت گردش در قسمتهاي مختلف باعث کشيده شدن خطوط مغناطيسي در جهت شرق مي شوند. در نهايت، اين خطوط دچار اعوجاج گشته و پيچ و تاب هايي را ايجاد مي نمايند.
در برخي مناطق، ميدان مغناطيسي هزاران بار قوي تر از ميدان مغناطيسي عمومي خورشيد است. در اين مناطق، دسته هايي از خطوط مغناطيسي به بيرون از سطح آمده و حلقه هايي را در اتمسفر خورشيد به وجود مي آورند. يکي از دو سر اين حلقه ها، قطب شمال مغناطيسي است. در اين نقطه جهت خطوط مغناطيسي به سمت بالا مي باشد. سر ديگر اين حلقه ها قطب جنوب مغناطيسي است و جهت خطوط مغناطيسي به سمت پائين و داخل خورشيد است. در هر دو سر هر حلقه يک لکه خورشيدي پديدار مي گردد. خطوط مغناطيسي، يونها و الکترونها را به سمت بيرون لک هاي خورشيدي راهنمايي مي کنند و به اين صورت حلقه هايي غول پيکر از گاز تشکيل مي شوند.
تعداد لکه ها بر روي خورشيد به اعوجاج هاي ميدان مغناطيسي آن بستگي دارد. تغيير تعداد آنها، از حداقل به حداکثر و دوباره به حداقل، چرخه لکه هاي خورشيدي ناميده مي شود. ميانگين مدت يک چرخه حدود 11 سال مي باشد.
در پايان هر چرخه از لکه هاي خورشيدي، ميدان مغناطيسي به سرعت دچار جابجايي قطبي مي شود و بسياري از اعوجاج هاي خود را از دست مي دهد. فرض کنيد که قطب شمال مغناطيسي خورشيد در آغاز يک چرخه در ناحيه قطب شمال جغرافيايي خورشيد قرار دارد. در زمان شروع چرخه بعدي، قطب شمال مغناطيسي خورشيد در محل قطب جنوب جغرافيايي آن قرار مي گيرد. يک تغيير قطبي از يک جهت به جهتي ديگر و بازگشت مجدد آن برابر با دو چرخه پياپي و درنتيجه معادل 22 سال مي باشد.
 

 ترکيب هسته اي:
ترکيب هسته اي در مرکز خورشيد به دليل دما و تراکم فوق العاده زياد مي تواند صورت پذيرد. از آنجائيکه بار ذرات مثبت است، تمايل به دفع يکديگر دارند اما دما و تراکم هسته خورشيد به قدري زياد است که مي تواند آنها را در کنار يکديگر نگاه دارد.
رايج ترين ترکيب هسته اي در مرکز خورشيد زنجيره پروتون-پروتون نام دارد. اين فرايند زماني انجام مي گيرد که ساده ترين شکل از هسته هاي هيدروژن (داراي يک پروتون) در يک آن کنار هم قرار مي گيرند. نخست، هسته اي متشکل از دو ذره به وجود مي ايد، سپس هسته اي با سه ذره و در نهايت هسته اي با چهار ذره شکل مي گيرد. در اين فرايند همچنين يک ذره الکتريکي خنثي به نام نوترينو پديدار مي گردد.
هسته نهايي شامل دو پروتون و دو نوترون است که در واقع هسته هليوم مي باشد. جرم اين هسته به مقدار بسيار اندکي کمتر از جرم چهار پروتونيست که هسته از آن تشکيل شده است. جرم از دست رفته به انرژي تبديل شده است. اين مقدار از انرژي به کمک فرمول مشهور فيزيکدان آلماني، آلبرت اينشتين، E=mc2 قابل محاسبه است. در اين معادله E به معناي انرژي، m به معناي جرم و c به معناي سرعت نور مي باشد.
 

 مقايسه با ديگر ستارگان:
کمتر از 5 درصد ستارگان در کهکشان راه شيري نوراني تر يا سنگين تر از خورشيد مي باشند. ولي برخي از ستارگان بيش از 100.000 برابر نوراني تر از خورشيد، و برخي از آنها جرمي بيش از 100 برابر جرم خورشيد را دارند. از سويي ديگر، برخي ستارگان نيز کمتر از 0001/0 خورشيد نور دارند، و يک ستاره مي تواند کمتر از 07/0 جرم خورشيد را داشته باشد. ستاره هاي داغ تري وجود دارند که بسيار آبي تر از خورشيدند و ستارگان سردتري نيز وجود دارند که سرخ تر از خورشيد هستند.
خورشيد نسبتا جوان و متعلق به نسلي از ستارگان به نام "جمعيت I ستارگان" مي باشد. يک نسل قديمي تر از ستارگان را با نام "جمعيت II ستارگان" مي شناسيم. احتمال وجود نسلي قديمي تر به نام "جمعيت III ستارگان" نيز وجود دارد که البته تا کنون هيچ عضوي از اين گروه شناسايي نشده است.

 مناطق خورشيد:
خورشيد و اتمسفر آن از چندين منطقه يا لايه تشکيل شده اند. از داخل به خارج، بخش داخلي خورشيد متشکل از هسته، منطقه تابشي و منطقه حرارتي مي باشد. اتمسفر خورشيد نيز از لايه هاي فوتوسفر، کرومسفر، منطقه انتقالي و تاج خورشيد تشکيل شده است. فراتر از تاج خورشيد، بادهاي خورشيدي، که معمولا جريانات برخواسته از گازهاي تاج خورشيد مي باشند، وجود دارند.
از آنجائيکه ستاره شناسان قادر به ديدن درون خورشيد نيستند، کليه دريافت ها به صورت غير مستقيم حاصل مي گردد. برخي از اطلاعات بر اساس قسمتهاي قابل مشاهده از خورشيد به دست آمده اند. برخي از اين اطلاعات نيز بر پايه محاسبات انجام شده با داده هايي از مناطق قابل رويت پيرامون خورشيد ثبت گرديده است.
 

 

 

 

 هسته خورشيد:

منطقه هسته از مرکز خورشيد تا حدود يک چهارم به سمت سطح خورشيد گسترده شده است. هسته حدود 2 درصد از حجم خورشيد اما تقريبا نصف جرم آن را دارد. حداکثر دماي اين منطقه 15 ميليون کلوين است. چگالي آن به 150گرم در هر سانتيمتر مکعب، تقريبا 15 برابر چگالي سرب، مي رسد.
دما و چگالي بالاي هسته به سبب فشار بسيار زيادي، معادل حدودا 200 بيليون بار بيشتر از فشار جو زمين در سطح دريا، مي باشد. فشار زياد هسته با در بر گرفتن همه گازهاي خورشيد، مانع از فروپاشي آن مي شود. در واقع هسته با داشتن اين فشار زياد، وزن خورشيد را تحمل ميکند.
تقريبا همه ترکيبات اتمي در اين منطقه صورت مي گيرند. مانند ساير قسمتهاي خورشيد، هسته آن نيز، بر اساس جرم، از 72 درصد هيدروژن، 26 درصد هليوم و 2 درصد عناصر سنگين تر تشکيل شده است. ترکيبات اتمي به تدريج محتويات هسته را تغيير داده اند. در حال حاضر 35 درصد از جرم هيدروژن در قسمتهاي مرکزي هسته و 65 درصد آن در مرزهاي بيروني هسته متمرکزند.

 

 منطقه تابشي خورشيد:

پيرامون هسته، پوسته ضخيمي به نام منطقه تابشي وجود دارد. ضخامت اين پوسته تا 70 درصد از شعاع خورشيد پيش رفته است. اين منطقه 32 درصد از حجم و 48 درصد از جرم آن را شامل مي شود.
اين منطقه به دليل اينکه انرژي غالبا در اين جا به صورت نور و تشعشع سفر مي نمايد، منطقه تابشي نام گرفته است. فوتون هاي به وجود آمده در هسته از ميان لايه هاي پايدار گاز عبور مي کنند. اما آنها به خاطر غلظت شديد ذرات گاز دچار پراکندگي شده و گاهي مدت 1 ميليون سال طول مي کشد که يک فوتون از اين منطقه گذر کند.
در پايين منطقه تابشي، چگالي معادل 22 گرم در هر سانتيمتر مکعب (حدودا دو برابر چگالي سرب) و دما 8 ميليون K مي باشد. در بالاي منطقه تابشي، چگالي معادل 0.2 گرم در هر سانتيمتر مکعب و دما 2 ميليون K است.
ترکيبات عناصر در منطقه تابشي از زمان تولد خورشيد تا به امروز به همين شکل باقي مانده است. درصد عناصر در بالاي منطقه تابشي بسيار شبيه به سطح خورشيد ميباشد.

 

 منطقه حرارتي خورشيد:

بالاترين لايه دروني خورشيد، منطقه حرارتي، از منطقه تابشي تا سطح خورشيد کشيده شده است. اين منطقه از سلول هاي حرارتي در حال جوش تشکيل شده است که 66 درصد از حجم خورشيد و تنها کمي بيش از 2 درصد جرم آن را به خود اختصاص داده است. در بالاي منطقه، چگالي نزديک به صفر و دما حدود 5800 K مي باشد. از آنجا که فوتون هاي خارج شده از منطقه تابشي باعث داغ شدن سلولهاي حرارتي مي گردند، اين سلولها به سمت سطح خورشيد در جوش و التهابند.
ستاره شناسان تا کنون دو نوع از سلولهاي حرارتي را مشاهده کردند. سلولهاي دانه اي (granulation) و سلولهاي ريز دانه اي (supergranulation). سلولهاي دانه اي حدود 1000 کيلومتر و سلولهاي ريزدانه اي در منطقه اي باضخامت تقريبي30000 کيلومتر مي باشند.

 

 فوتوسفر خورشيد:

پايين ترين لايه اتمسفر خورشيد فوتوسفر نام دارد. اين منطقه نوري را که ما مي بينيم متساطع مي نمايد. ضخامت فوتوسفر 500 کيلومتر است. ولي بخش اعظم نوري که ما مشاهده مي کنيم از پايين ترين قسمتهاي اين منطقه که ضخامت آن تنها حدود 150 کيلومتر است ناشي مي شود. ستاره شناسان گاهي اين قسمت را، سطح خورشيد مي دانند. در پايين فوتوسفر دما 6400K و در بالاي آن 4400K مي باشد.
فوتوسفر از شمار زيادي دانه تشکيل شده که در بالاي سلولهاي دانه اي قرار دارند. يک دانه معمولي حدو 15 تا 20 دقيقه عمر مي کند. ميانگين چگالي فوتوسفر کمتر از يک ميليونيم گرم در هر سانتيمتر مکعب مي باشد. به نظر مي رسد که اين مقدار چگالي بسيار ناچيز است اما در هر سانتيمتر مکعب از اين منطقه بين ده ها تريليون تا صدها تريليون ذرات خاص وجود دارند.

 

 کرومسفر خورشيد:

منطقه بعدي کرومسفر است. مهمترين خصوصيت اين منطقه افزايش دما بين 10.000K تا 20.000K مي باشد.
ستاره شناسان نخست طيف کرومسفر را در هنگام کسوف هاي کامل شناسايي کردند. اين طيف پس از آنکه ماه فوتوسفر را مي پوشاند، قبل از پوشيده شدن کرومسفر در سايه ماه، قابل رويت است. اين حالت تنها چند ثانيه به طول مي کشد. خطوطي که از اين طيف منتشر مي شوند مانند نور فلش به طور ناگهاني به چشم مي خورند، از اين رو به اين طيف، طيف فلش مي گويند.
کرومسفر ظاهرا از تشکيلاتي شبيه ميخ به نام "خار" ساخته شده است. يک خار معمولي حدود 1000 کيلومتر عرض و تا 10.000 کيلومتر ارتفاع دارد. چگالي کرومسفر حدود 10 بيليون تا 100 بيليون ذره در هر سانتيمتر مکعب است.

 منطقه انتقالي خورشيد:
دماي کرومسفر تا حدود 20.000K ، و دماي تاج خورشيد به بيش از 500.000K مي رسد. بين دو منطقه مذکور، منطقه اي با ميانگين دما وجود دارد که به آن منطقه انتقالي مي گويند. اين منطقه بيشتر انرژي خود را از تاج خورشيد مي گيرد و بيشتر نور خود را به شکل فرابنفش متساطع مي نمايد.
ضخامت منطقه انتقالي چند صد تا چندين هزار کيلومتر است. در برخي قسمتها، خارهاي کرومسفر که نسبتا سرد شده اند سر بر افراشته و به اتمسفر خورشيد مي رسند. در برخي قسمتها نيز ترکيبات داغ تاج خورشيد تا نزديکي فوتوسفر فرو مي رود.

 تاج  خورشيد:
تاج خورشيد بخشي از اتمسفر آن است و دمايي متجاوز از 500.000K دارد. تاج خورشيد متشکل از گازهاي يونيزه شده به شکل رود و يا حلقه اي مي باشد. ترکيبات و ساختمان تاج خورشيد به صورت عمودي به سطح آن متصل است و ميادين مغناطيسي که از اعماق خورشيد ساطع مي گردند منجر به شکل گيري اين منطقه مي شوند. دماي هر يک از جريانات تاج خورشيد به خطوط ميدان مغناطيسي شکل دهنده همان جريان بستگي دارد.
دماي نزديک ترين بخش از تاج خورشيد به سطح آن حدودا بين 1 تا 6 ميليون K و چگالي آن معادل 100 ميليون تا 1 بيليون ذره در هر سانتيمتر مکعب مي باشد. دماي اين منطقه هنگام وقوع يک فوران به ده ها ميليون کلوين مي رسد.

 بادهاي خورشيد:
تاج بسيار داغ خورشيد در فضا منتشر و دائم در آن گسترده مي شود. به جريان گازهاي تاج خورشيد در فضا، بادهاي خورشيدي مي گويند. چگالي اين بادها در نزديکي خورشيد تقريبا بين 10 تا 100 ذره در هر سانتيمتر مکعب مي باشد.
باد خورشيدي با سرعتي معادل صدها کيلومتر در ثانيه از خورشيد به هر سوي مي وزد. در فواصل زيادي از خورشيد يعني فراتر از مدار پلوتو، از سرعت اين باد که مافوق صوت مي باشد، کاسته مي شود و با گازهاي ميان ستاره اي ترکيب مي گردد.
بادهاي خورشيدي به شکل يک حباب بزرگ شبيه به قطره اشک به نام هليوسفر، در فضاي ميان سياره اي گسترده شده است. خورشيد و همه سياره هاي آن درون هليوسفر مي باشند. فراتر از مدار پلوتو، دورترين سياره از خورشيد، هليوسفر به گازها و غبارهاي ميان ستاره اي مي پيوندد. گرچه اتمهاي موجود در فضاي بين ستاره اي مي توانند در اين حباب نفوذ نمايند اما در واقع مي توان گفت که همه مواد تشکيل دهنده هليوسفر از خود خورشيد ناشي مي شوند.

 فعاليت هاي خورشيد:
ميدان هاي مغناطيسي خورشيد از منطقه حرارتي، بالا رفته و از ميان مناطق فوتوسفر، کرومسفر و تاج خورشيدي سر بر مي آورند. اين جريانات مغناطيسي منجر به شکل گيري فعاليت هاي خورشيدي مي گردند. اين فعاليت ها شامل پديده هايي به نام لکه هاي خورشيدي، شعله هاي بلند، زبانه ها و فوران هاي تاج خورشيد مي باشند.

 زبانه هاي خورشيد:
زبانه هاي خورشيدي انفجارهاي مهيبي در سطح خورشيد مي باشند. در مدت زماني معادل چند دقيقه يک زبانه مي توانند دماي مواد موجود را تا ميليون ها درجه افزايش دهد و انرژيي آزاد نمايد که معادل انرژي آزاد شده توسط يک هزار بيليون تن TNT مي باشد. اين انفجارها در نزديکي لکه هاي خورشيدي، معمولا در راستاي خطوطي بين دو سر ميدان مغناطيسي رخ مي دهند.
زبانه ها انرژي را به اشکال گوناگوني مانند پرتوهاي الکترومغناطيس (پرتوهاي گاما و ايکس) و ذرات باردار (پروتون و الکترون) آزاد مي کنند.
دانشمندان براي نخستين بار به اين نتيجه رسيدند که زبانه ها و فوران هاي خورشيدي لرزه هايي را در اعماق خورشيد به وجود مي آورند که بسيار شبيه به زمين لرزه در سياره ما مي باشند. محققان زبانه اي را مشاهده نمودند که منجر به وقوع لرزه اي بسيار شديد در اعماق خورشيد گرديد. اين لرزه 40 هزار بار بيشتر از زمين لرزه شديد سانفرانسيسکو در سال 1906 انرژي آزاد نمود. مقدار اين انرژي آزاد شده به حدي بود که مي توانست برق مصرفي ايالات متحده را تا مدت 20 سال تامين نمايد.
مناطقي که لکه هاي خورشيدي و فوران ها در آنها شکل مي گيرند، مناطق فعال ناميده مي شوند. مقدار فعاليت هاي خورشيدي از ابتداي يک چرخه لکه خورشيدي، به تدريج افزايش مي يابد و با گذشت پنج سال به حداکثر مي رسد. تعداد لکه ها در هر زمان متفاوت است. در قسمتي از صفحه خورشيد که ما مي بينيم، تعداد آنها از صفر تا 250 لکه تغيير مي کند.

 لکه هايخورشيد:
لکه ها ي خورشيدي مناطقي تيره و تقريبا دايره اي شکل در سطح خورشيد مي باشند. آنها زماني شکل مي گيرند که دسته اي از خطوط مغناطيسي درون خورشيد به سطح آن مي رسند.
دماي لکه ها از دماي مناطق اطرافشان کمتر و ميدان مغناطيسي در آنها بسيار قوي است. دماي لکه هاي خورشيدي بين 4000 تا 4500 کلوين و دماي سطح خورشيد 5700 کلوين است. به همين دليل آنها تيره تر از سطح ستاره به نظر مي رسند.
داده هاي رصدي از دهه 80 قرن بيستم نشان مي دهند که تعداد لکه هاي خورشيدي با شدت تابش خورشيد مرتبط است. جالب اين که هر چه تعداد لکه ها بيشتر باشد، شدت تابش نور خورشيد بيشتر است، چون که مناطق اطراف لکه ها درخشان تر اند.
ابرنواختر ستاره اي در حال انفجار مي باشد که مي تواند بيليون ها بار درخشان تر از خورشيد باشد، پيش از آنکه به تدريج محو شود. در هنگام درخشندگي، نور يک ستاره منفجر شده مي تواند همه يک کهکشان را تحت الشعاع قرار دهد. اين انفجار، ابر عظيمي از گاز و غبار را در فضا ايجاد مي نمايد. جرم مواد موجود در اين ابرها مي تواند متجاوز از 10 برابر جرم خورشيد باشد.
ستاره شناسان دو نوع از ابرنواختر ها را شناسايي کرده اند. نوع اول و نوع دوم. نوع اول ابرنواخترها احتمالا در ستاره هاي دوتايي شکل مي گيرند. ستاره دوتايي به يک جفت ستاره اطلاق مي گردد که به هم نزديکند و دور يکديگر مي چرخند. نوع اول احتمالا در دوتايي هايي رخ مي دهد که يکي از آنها يک ستاره کوچک و متراکم به نام کوتوله سفيد است. اگر اين دو ستاره به اندازه کافي به يکديگر نزديک باشند، جاذبه کوتوله سفيد اجرام و ذرات ستاره همراه خود را به سمت خود مي کشد. هنگاميکه کوتوله سفيد به جرمي معادل 4/1 برابر جرم خورشيد رسيد، متلاشي و منفجر مي گردد.
نوع دوم ابرنواختر در اثر مرگ يک ستاره بسيار بزرگتر از خورشيد شکل مي گيرد. زمانيکه چنين ستاره اي به آخر عمر خود مي رسد، هسته آن به سرعت متلاشي مي گردد. حجم بينهايت زيادي انرژي ناگهان به شکل نوترون (نوعي از ذرات تشکيل دهنده اتم) و پرتوهاي الکترومغناطيس (نيروهاي الکتريکي و مغناطيسي) آزاد مي شود. اين انرژي باعث تبديل ستاره به ابرنواختر مي گردد.
بيشتر ابرنواختر ها در چند روز نخست شکل گيري به حداکثر درخشندگي مي رسند و تا چندين هفته درخشندگي آنها ادامه خواهد داشت. با گذشت چند ماه درخشندگي آنها کم مي شود. و در طي سالها همچنان از درخشندگي آنها کاسته مي گردد. تفاوت ديگر ابرنواختر ها در مقدار و ترکيب مواديست که به فضا خارج مي کنند.
ابرنواختر ها همچنين مي توانند اجرام گوناگوني را بر جاي بگذارند. پس از برخي از انفجارهاي ابرنواختر، ستاره اي کوچک و متراکم متشکل از نوترون ها و يا شايد ذرات بنيادي کوارک بر جاي مانده است. به چنين ستاره اي ستاره نوتروني مي گويند. به ستاره هاي نوتروني که به سرعت مي چرخند و به شدت مغناطيسي باشند، اصطلاحا تپ اختر مي گويند. پس از برخي انفجارها ممکن است جرم نامرئي به نام سياهچاله ايجاد گردد. سياهچاله چنان گرانشي دارد که حتي نور نيز مني تواند از آن عبور کند.
دانشمندان بر اين باورند که ابرنواخترها به وجود آرندگان عناصر سنگيني چون آهن، طلا و اورانيوم که در زمين و اجرام منظومه شمسي يافت شده اند مي باشند.
در سال 1054 ستاره شناسان چيني ابرنواختري را ثبت کردند که در تمام طول روز درخشش آن پيدا بود. اين انفجار از خود يک تپ اختر و سحابي کراب که همچنان قابل رصد است را بر جاي گذاشت.
در سال 1987، يک ابرنواختر در ابر ماژلاني، نزديک ترين کهکشان به راه شيري، مشاهده شد. در طي 400 سال اين اولين ابرنواختري بود که با چشم غير مسلح قابل رويت بود

 

جدول آماري خورشيد

جرم (کيلوگرم)

1.989e+30

جرم (زمين =1)

332,830

شعاع استوايي (کيلومتر)

695,000

شعاع استوايي (زمين =1)

108.97

ميانگين چگالي (گرم در سانتيمتر مکعب)

1.410

دوره گردش (روز)

25-36

شتاب گريز از سطح (کيلومتر در ثانيه)

618.02

درخشندگي (ارگ* در ثانيه)

3.827e33

ميانگين دماي سطح

6,000C

سن (بيليون سال)

4.5

عناصر اصلي شيميايي

92.1%

هيدروژن

7.8%

هليوم

0.061%

اکسيژن

0.030%

کربن

0.0084%

نيتروژن

0.0076%

نئون

0.0037%

آهن

0.0031%

سيليکون

0.0024%

منيزيوم

0.0015%

گوگرد

0.0015%

 

 

 

 

 

 

گروه علمي فدک

کليه مطالب ارسالي با نام اشخاص و ذکر منبع در اين سايت درج مي شود

راهنما  |  آمار سايت  |  درباره ما  |  تماس با ما  |  نظر خواهي  | آرشيو  |  عضويت در سايت